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SPIRAL CRACKING AROUND A STRAINED CYLINDRICAL
INCLUSTON IN A BRITTLE MATERIAL AND
IMPLICATIONS ¥OR VIAS IN INTEGRATED CIRCUITS

L. B. FREUND AND K. S. KIM
Division of Engineering, Brown University, Providence, R1 02912

The practice of forming electrical conduction paths in an insulating material by filling
cylindrical holes with molten metal can result in high residual stresses when the metal
cools. Residual stress is greatest near the metal-insulator interface, and stress relaxation
by means of de-adhesion is possible. Another failure mode that poses greater practical
difficulties is the growth of cracks along paths which spiral away from the interface into
the brittle material. Such cracks may occur singly or in pairs, and their lengths can
be sufficiently great to provide links with adjacent conduction paths. Such cracks are
considered from the fracture mechanics point of view. The residual stress field is relaxed by
the growth of spiral cracks which are modeled as continuous distributions of dislocations.
It is assumed that these cracks grow so that the stress state on the prospective fracture
plane just ahead of the crack tip is purely tensile. The paths are determined by means of
an incremental numerical procedure.

INTRODUCTION

The question of reliability of integrated circuits is concerned with the predictable
sustained performance of some electronic function. Even though the capacity for carrying
mechanical loads may not be relevant to this function, failures of devices are commonly
due to mechanical effects. These failures are driven by residual stresses arising from fab-
rication processes, often carried out at elevated temperature and involving combinations
of materials with very different thermal and mechanical properties. The fracture problem
studied here is of this kind.

In fabricating an integrated circuit with a complex planar or multi-planar structure,
it is sometimes necessary to pass conduction lines directly through the brittle substrate
of a device. This may be done by boring a hole through the thickness of the substrate,
which is assumed to be initially stress free. The hole is then filled with molten metal, say
aluminum or copper, and the molten metal adheres to the surface of the hole as it cools
and solidifies. As a result, an elastic mismatch extensional strain Ae can arise between
the metal inclusion in the cylindrical hole and the surronnding brittle material.

If the brittle substrate is thick compared to the radius of the hole (see Figure 1),
then the mechanical fields over most of the length of the inclusion are essentially two
dimensional plane strain fields. This is the case studied here. The tensile stress in the
residual stress field tends to be greatest at the bimaterial interface. Indeed, fractures
typically nucleate at the interface. However, it is often observed that fractures grow away
from the intcerface, and they tend to spiral around the cylindrical inclusion, as suggested
in Figure 1. Furthermore, the detailed shape of the spiral appears to be quite sensitive
to the relative properties of the two materials involved. The purpose here is to examine
the spiral cracking process from the perspective of brittle fracture mechanics.

The stress field of a two dimensional elastic solid containing a sharp crack is nom-
inally square root singular at the crack tips. The amplitude of this singularity is called
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Fig. 1. Schematic diagram of cylin-
drical inclusions in a brittle mate-
rial, with a spiral crack emanating
from one inclusion.

the stress intensity factor and the spatial dependence of the asymptotic field is univer-
sal. The tendency for crack growth is commonly expressed, as a postulate on material
behavior, in terms of critical or material-specific values of the stress intensity factor. Of
particular concern here is the connection between the direction of crack growth and the
stress intensity factor. For plane strain deformation, the crack opening near the tip can
be symmetric with respect to the lonal plane of the crack (mode I), antisymmetric (mode
II), or some combination of the two (mixed mode). It has frequently been observed that
cracks in brittle materials tend to advance in such a way as to maintain a symmetric
deformation field (mode 1) near the moving crack tip [1,2]. This additional postulate
on fracture behavior, sometimes called the principle of local symmetry, is adopted as a
criterion to predict the path of crack advance around the cylindrical inclusion.

The analysis proceeds in several steps. First, the residual stress field due to the
thermal mismatch strain is estimated in the absence of a crack. Then, & crack is assumed
to initiate at the interface and to grow around the inclusion. A numerical algorithm is
developed for extracting the values of the mode I and mode II stress intensity factors,
denoted by X and K}, as the crack gets longer. The same procedure has been applied
for straight cracks in a homogeneous body in [3]. The algorithm is sufficiently general to
analyze crack growth along a path whick is not specified in advance but which is selected
incrementally by the local symmetry condition K7 = 0. Results are presented for cases
when the stiffness of the inclusion is equal to, greater than and less than the stiffness
of the surrounding brittle elastic material. Similar calculations restricted to the case of
homogeneous bodies have been presented in [4] and {5].

INITIAL RESIDUAL STRESS

Suppose that a cylindrical hole of radius a exists in a stress free block of brittle
material which has dimensions large compared to a. The hole is filled with molten metal
which adheres to the surface of the hole as it cools. Suppose that an extensional mismatch
strain Ae results from the temperature change and/or the difference in thermal expan-
sion coefficients. The axially symmetric stress distribution in the surrounding material,
referred to polar coordinates centered on the hole, is

0 = —08y = 2upm(1+vm)’Be a? _  uC _d?
~ bm{l+vm) +p(l=vm)r2 = 2x(1 =) r?’

ore =0 (1)

where u and v are the shear modulus and Poisson’s ratio, respectively, of the brittle
insulator and pu,, and v, are the corresponding constants for the inclusion. The stress
(1} is to be relieved through the process of spiral cracking. All computed results for stress




Fig. 2. A curve £ with arclength y
parameter s in the range s_ < s <
3,, representing a possible fracture L
path in the z, y-plane.

are scaled by the dimensionless constant

_ 4mum(1 = )1+ vm)?
T pm( + vm) + p(1 — vm)

(2)

introduced in (1). When the elastic properties of the inclusion and the surrounding brittle
material are approximately equal then C has a value about ten times the elastic mismatch
strain Ae. All values of stress intensity factor calculated here are normalized by

e _ #CVa
K= 2(1 —-v) 3

To give an indication of the value of this normalizing parameter for a particular sys-
tem, consider an inclusion with radius a ~ 0.1 mm and mismatch strain of 0.001 in
a material with shear modulus of about 30GPa. These numerical values imply that
K* ~2MPa\/m.

THE SUPERPOSITION SCHEME

Consider any curve in the plane that is a prospective path for a spiral crack, and
denote this curve by £. A pair of orthogonal unit vectors e, e, aligned with the tangent
and normal to £ are introduced, as shown in Figure 2. The variable s is the arclength
along £ measured in the direction of e, from some arbitrary point. The angle ¢(s) is the
angle measured counterclockwise from the z-axis to the tangent line of £ at s. For any
state of stress in the body expressed with respect to the polar coordinate directions or
the underlying z,y rectangular coordinate directions, the normal traction 7,(s) and the
shear traction 7,(s) associated with the normal vector e, at any point along £ can be
expressed as the complex quantity

Ta(8) +i7e(s) = 1 (02z + 0yy) + [§ (0yy — 022) + 104,] 342 )
. (4
= ':_) (orr + oge) + [% (cge — arr) + z.01'0] ebw(.)-‘(')]

where ¢ = /~1. In this expression, it is understood that the coordinate s on £, coordi-

nates z,y in the plane, and coordinates r,8 in the plane represent the same point.
In terms of the representation (4) and the residual stress (1), the traction to be
relieved by crack growth is 09(s) + i0?(s). The process of crack growth is simulated by
introducing a continuously distributed array of Volterra elastic dislocations for which the




distribution is selected to cancel the initial residual stress. This is a common device for
analyzing fracture phenomena in brittle materials [6]. The fundamental building block
in the procedure is the expression for the complete stress field due to a single, isolated
dislocation with arbitrary Burgers vector at an arbitrary point in the elastic body being
analyzed. In the present case, the body is the whole plane with elastic constants E and v
containing an embedded circular inclusion of radius a with elastic constants E, and vy

This stress distribution can be found without approximation as outlined in Appendix
1. Features of particular significance for this development are that each stress component
is linear in the components of the Burgers vector of the dislocation and that each stress
distribution has a pole-type singularity at the point coinciding with the dislocation in
the plane. Consider once again the arbitrary curve £. Suppose the dislocation is located
at a point on that curve identified by = particular value of arclength, say s, and that
the Burgers vector of that dislocation is denoted by components b,(s) and b,(s). Now
consider any other point on £ located by means of a value of arclength q. The features
of the stress distribution noted above imply that the traction components o, and o at ¢
due to the dislocation at s can be written in the form

1
s—q

on(g;8) = [Enz(% $)bz(s) + Zn,(q,s)b,(s)]

®)
019i8) = 7= [Beelar c(e) + Sey(g, )by 9]

The steps required to evaluate the four functions X,,(g,s),... appearing in (5) for any
values of s and ¢ are given in detail in Appendix Il. These functions play a central role
in the solution procedure.

The stress fields discussed above are now generalized from the case of a single, isolated
dislocation with finite Burgers vector to the case of a continuous distribution of disloca-
tion with infinitesimal Burgers vectors. This transition is effected simply by making the
replacements

b(s) — ¥:(s)ds and by(s) — ¥,(s)ds (6)

and then allowing the arclength s to range over values s_. < s < s, on £. With this
interpretation, ¥;(s)ds represents the net Burgers displacement in the i-direction of a
dislocation smeared out over the infinitesimal interval from s to s + ds. In other words,
ti(s) is the gradient along L of the discontinuity in the i-component of displacement
across L at s. If the discontinuity in displacement u; at s is denoted by [u;}(s), then

fus)(e) = /' Bels)ds, [u,)(a) = / " py(s)ds 1)

where it is tacitly assumed that the crack is closed without net dislocation at s = s_. If
the same is true at s = s, then ¥, and i are subject to the closure conditions

4 LIS
/ Y. (s)ds =0, / Yy(s)ds =0 (8)

The functions ¥, and y, are expected to be square-root singular at the crack ends [6] and
to be asymptotically proportional to the elastic stress intensity factors there. In terms
of the mode I and mode II stress intensity factors discussed in the Introduction, this
asymptotic relationship is

Kir+ iK1 = —gaf—s lim Van(s, = 5) [belo) 4 ity ()] (9)
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For the continuously distributed dislocations, the traction at any point ¢ on £ is
still given by (5), provided that the expressions on the right side of (5) are summed over
all values of s. This is accomplished by making the replacements (6) in (5), and then
integrating over the full range of s on £. The result is

2u(@) = [ [Eacl.)0(6) + Enala, W) ;2
" , (10)
0@ = [ [Bula,s0be(6) + Bula.iby(o)] 7

Thus, if the curve representing the crack line £ is known, and the distribution of crack
opening ¥.(s), ¥, (s) along the curve is known, then (10) provides the means of calculating
the distribution of traction on the crack faces that is required to enforce the given opening.

The problem at hand, however, is the inverse of this situation. That is, the traction
is given along any possible fracture path by the distribution of initial residual stress in
the brittle region (1). The distribution of relative displacement of the crack faces along
the crack path is unknown and, indeed, the path L itself is unknown a priori. Thus, a
strategy is required for determining the crack path and the distribution of crack opening
required to relax the initial residual stress in a physically realistic way. The growth of the
crack negates the traction induced by the initial residual stress field on the crack path.
This implies that the crack opening is sought for which

on(g) + on(g) = 0 and a4(q) + 0{(q) = 0 along £ (11)

In view of (10), these conditions yield singular integral equations for the crack opening
distribution ¥;(s) and 1, (s).

A common crack growth criterion for brittle materials of the kind imagined here
is that the crack advances with K; = Ry, and K;; = 0 where K. is the constant
fracture toughness of the material. Indeed, the spiral shape of observed fracture paths in
consistent with this hypothesis, and qualitative observations suggest that the condition
K11 = 0 may be the precise mechanism by which the cracks search out the spiral paths
which they follow. This idea is pursued in 1]« .. xt section by letting the crack seek a
path incrementally during growth according tu tu:- criterion.

CRACK PATHS BASED ON K;; =0

The crack is assumed to start at the point z = a, y = 0 and to grow in the direction
of increasing angle 6. The shape of the path is described by means of values of the slope
of the path ¢(s) at discrete points. If the arclength along the path is measured from the
nucleation point, then the discrete points are identified by the values s = 54, k = 1,2,3, ...
and the values of the slope at these points are denoted by ¢(si) = ¢;. It is assumed that
the path segments between those points are circular arcs, and that the slope of the path
is continuous at each junction of adjacent circular arcs. The slope of the path between s;
and si4 is linear is s and is given by

Sky)] — 8 8 — 8%
$(s) = g ———— + bkp1————, 8k < 3 < Sk41 (12)
Sk41 Sk Sk4+1 Sk




Fig. 3. An increment of the un- Y
known crack path for s; < s <
Sk41 represented as a circular are
with known endpoints.
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The radius of curvature p(s) of the path, constant within each segment, is
B T Ot L PP PP P (19)
p(s) Sk+1 — Sk

If the rectangular coordinates of the point located by s; are (zi,yx), then it is evident
from Figure 3 that the coordinates of any point in the interval s; < 8 < s;4 are

z(s) = zx + p(s) [sin d(s) —sindy] , y(s) = yx ~ p(s) [cos ¢(s) — cos ¢] (14)

The quantities r(s) and 8(s) needed for the calculation are readily obtained from these
rectangular coordinates. A similar description has been used in [4].

With r(s), 6(s) and ¢(s) determined explicitly, the functions I,;(g, s) appearing in
(10) can be evaluated by following the steps outlined in Appendix II. These functions are
bounded and continuous for the class of curves £ being considered here. With the left
side of the equation (10) given in terms of the initial residual stress distribution according
to (1), the equations provide a pair of coupled singular integral equations of the first kind
for 1.(s) and 1,(s). Accurate approximate solutions to equations of this type can be
found by Gaussian integration procedures [7]. To this end, the unknown functions are
expressed in the form

- 9:(s) o) = gy(s) 15
v:(6) Vi(ss =8)(s-s.) i) Vi(ss —8)(s—s) (15)

to reflect the anticipated square root singularities in these functions at the ends of the
crack. The functions g.(s) and g,(s) are expected to be bounded and continuous, and
to be expressible to any degree of accuracy as a finite series of Chebyshev polynomials of
the first kind. The weight function appearing in the orthogonality relationship for these
polynomials is

1
O T v

which is provided by the representation (15). The smooth functions g.(s) and g,(s) are
represented by a series of the first N Chebyshev polynomials with unknown coefficients.
The equations (10) are then enforced at the N — 1 discrete points

q,,=%(s++3_)+§(s+—s_)cos§v5, k=1,...,N-1 a7

and the integrals are approximated by the appropriate Gaussian integration formulas (8],
providing 2N — 2 equations for the 2N unknown values g,(s;) and g,(s;) fori =1,...,N.




The Gaussian integration points are

w(21 - 1)

N =1,...,N (18)

si=1(sy +3.)+ 4(s, —s_)cos

and the full system of 2N — 2 equations is

3 [Enz(Qkasi)gt(si) + SLL(kasi)gy(si)] = —0%(qi)

Sy~ Qk

—

(19)

N
T Stt(‘]h sl)gx(si) + 2.,(q::,-9.')y,,(8i) _ '}
53 — = —a(a)
The remaining two equations are obtained from the conditions (8) that the crack closes
with zero net dislocation over its entire length. Approximation of (8) by means of the
Gaussian integration formula yields

N N
D oa:(s)=0, Y gy(s)=0 (20)

=1 i=1

Although the coefficients of the system of equations are algebraically complicated, they
are known explicitly and the equations are readily solved numerically by means of the
Gauss-Jordan method or an equivalent method.

Suppose that the path has been found for 0 < s < sx. Then the process of locating
point si,; by enforcing the condition K;; = 0 is as follows. First, the length of the
increment ds = sx4) —sk is specified. Then, the mode 11 stress intensity factor is calculated
for three trial selections of ¢x41, namely, ¢;,, = dx — ¢, ¢1,, = ¢+ and ¢:’+1 = ¢r +
€ where € is a specified small number, typically about 0.02. The three corresponding
values of mode II stress intensity factor, say K;, K§; and K7}, then permit a parabolic
interpolation for Ky versus ¢x41. The root for K5 = 0 provides a first approximation for
the desired value of ¢x+1. The value of K corresponding to this root is then calculated.
If the value is less in magnitude than some predetermined magnitude, typically 0.001 K},
then the process is terminated. If this condition is not fulfilled, then the root is used
as the basis for a second iteration following the template outlined above. The process is
repeated until convergence is achieved, whereupon the step to locate si47 is begun.

Representative results for the variation of mode I stress intensity factor with arclength
along the computed crack paths are shown in Figure 4 for the case when u, = ¢ and
Vm = v, in Figure 5 when pyn = 2p and v,y = v, and in Figure 6 when u, = p/f2
and v, = v. The corresponding crack paths are also shown as insets in the figures.
Some qualitative features are evident from the calculated shapes of the spiral cracks. For
example, an increase in the stiffness ratio um /u causes the crack to spiral away from the
inclusion at a faster rate.

CONCLUDING REMARKS

There are no exact elasticity solutions for spiral cracks in bi-materials systems of
the type considered here. Consequently, the accuracy of the numerical algorithm for
solving problems could be ascertained only by considering some limiting cases. When
the two materials have the same elastic properties, that is when @ = 8 = 0, there are




Fig. 4. Mode I stress intensity fac-
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tor versus crack length for the case
when the two materials have iden-
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shows the computed crack path. , 10}
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several solutions available for cracks that are straight or are circular arcs concentric with
the interface. In such cases, the computed stress intensity factors agreed with the exact
results to within 0.1% for N = 15. There is also an elastic crack solution for the case of
distinct material properties but with the crack lying in the circular interface and extending
over an arbitrary arc of the interface [9,10]. However, the present analysis is not applicable
to the case of an interface crack, and this matter is currently being pursued.

The feature that each curve for mode I stress intensity factor has a local maximum
at a value of s/a of about unity is interpreted in the following way. If a crack is nucleated
at some point on the interface between the cylinder and the surrounding matrix and it
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subsequently grows along a spiral path with more or less constant fracture toughness,
then that growth is initinlly unstable. For any erack length hbetween zero and the length
when K is maximum, the crack grows into a region of increasing stress intensity factor.
Thus, growth is spontaneous in this region. Beyond the maximum point the growth is
stabilized. The actual process is probably more complex than this simple idea suggests,
perhaps involving some dynamic crack growth phase.

A point of some practical significance is that the spiral cracks continue to grow away
from the inclusion if the inclusion is significantly stiffer than the surrounding insulator. On
the other hand, if the inclusion is significantly less stiff than the insulator, then the radial
range of the spiral crack appears to be limited. Consequently, a reduction of stiffness of
the inclusion by material selection or leaving a hollow core would tend to diminish the
prospect of inclusion-to-inclusion cracking.
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APPENDIX I: STRESS FIELD DUE TO A SINGLE DISLOCATION NEAR
A CIRCULAR INCLUSION

The configuration for which the fundamental dislocation solution is required is shown
in Figure 7. The dislocation is located at a point with polar coordinates rq,8;. The
Burgers vector of the dislocation has rectangular components b, and b,. The mechanical
field of the dislocation is conveniently described in rectangular coordinates oriented so
that the dislocation lies on one coordinate axis. Thus, the rotated (£,n) rectangular
coordinate system is introduced as shown in the figure. For any given point (z,y) in the




Fig. 7. Configuration which pro- n y
vides the fundamental elastic dis-
location solution necessary to for-
mulate integral equations model-
ing spiral crack growth.

original coordinate system and any Burgers vector (b., b,), the corresponding position in
the rotated coordinates is

£ =1xcosfy+ysinfy, n=—zsinby+ycosby (21)
and the corresponding Burgers vector is
be = by cosfa + bysinfy, b, = —b,sinbs + by cos by (22)

In the rotated coordinate system, the Airy stress function for the stress distribution
outside the inclusion has been given by Dundurs and Mura [11] as

_ ub at+p? 2 ﬂ(1+°‘) Mo — w
) = =5t {tars o+ $E i 2 4 BER /i) - )
n(a - 8) [(a/fd)‘(fd/a ~1)(26rq4 — @* -fa) ]}
T 21+ 8) 72 7
m {(f ra)lnr + ﬁz [(E - a?/ra)lnry —€lnr] — ﬂ( + o )'I(wz - w)

(f-az/rd(ﬁ-fd) r.f,) 025]

r3

a-p a?
—-m [(a/rﬂ‘(rﬁ/az - 1) (2;—3 lnr

(a—B) l+a l-a
+[ 1+8 (ra/a’ —1)+1—ﬂ (1—ﬂ)(1+a—2,8)] g }

(23)
where
T=v§2+1]2, T1=v(£—7‘4)2+1]2, 7'2=v({'—02/1'4)2+7]2 (24)
w =arctan[n/€], w; = arctan[n/(€ —r4)], wp = arctan|n/(€ - a®/rq)]
and the material parameters a and f§ are defined by
o= (1 —v) —p(1 —vy) 5= pm(l —2v) — p(1 = 2vuy,) (25)

Hm(l V) +u(l vm)’ 2um(1 V) +p(l  vm)

Ve~
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For the special case when the two materials are the same, @ = § = 0 and the stress
function for the region exterior to the inclusion is

[ 2 2
= — —rq) = b - 26
X(Cl Y]) 4”(1 — V) [b'l({ rd) fn] In (1] + (E 1"4) ) ( )
In either case, the stress components referred to the rectangular £, n-coordinate system
are derived from the Airy stress function according to

*x 8*x *x

=gz Mm@ Y=g (27)

Finally, the stress components in the original rectangular z,y-coordinate system are ob-
tained by the fundamental transformation rule for the stress tensor, given in complex
notation by

%(Uw +0:.) = %(‘755 +a9), %("vv —0:z) 102y = [%(UM —oge) + i”(n] e (28)

The mathematical expressions for stress components as functions of z and y can be
obtained explicitly for general values of the elastic constants. However, the expressions
are too complex to be either interesting or useful. Nonetheless, the steps outlined here
for constructing these expressions can be implemented in a numerical procedure in order
to calculate values of these stress components without approximation.

APPENDIX II: STEPS IN CALCULATING £,,;(qg,s)

Consider a crack path £ in the plane exterior to the circular inclusion. The path is
specified parametrically by polar coordinates r(gq), 6(q) of each point in terms of arclength
g along £ at the point. If a dislocation is located at a particular point defined by arclength
g = s on L, then the distribution of traction as a function of position g along £ is singular
as (g — s)~!. The function £,,(q,s) is the amplitude of this singularity for the normal
traction due to the z-component of the Burgers vector of the displacement. The purpose
of this section is to state the steps involved in actually calculating this amplitude from
the dislocation solution in the previous section.

If the position of the dislocation is specified by a particular value of arclength s then
the parameters rq and 64 of Appendix I are replaced by r(s) and 6(s), respectively.

(i) The first step in the process is to calculate the stress components o¢e(€,7) ... for
arbitrary Burgers vector b, b,. This requires that the the stress function (23) must
be differentiated according to (27), a task most easily accomplished by means of a
computer program capable of symbolic mathematical operations.

(ii) To find the particular component of interest here, set b; = 1 and b, = 0. Then make
the substitutions implied by (22) in the expressions for stress, that is, substitute
be — cos6(s) and by — —sin8(s) into o¢¢(€,n) and the other stress components.

(iii) Next, it is necessary to transform coordinates from the £,7 system to the fixed
coordinates z,y in the physical plane. For a particular field point on £ represented
by arclength ¢ along the curve, z = r(q)cos8(g) and y = r(q)siné(gq). Thus, the
coordinate transformation indicated by (21) takes the form

€ — r(g) cos[6(g) — 8(s)], n — r(q)sin[6(q) — 6(s)] (29)

(iv) At this point, the stress components are expressed in terms of the coordinates s
and ¢ along £, and the only task remaining is to transform these stress components

/




to the local t,n coordinate system on £ according to (4). For the particular stress
component. of interest, t'is is necomplished by

2“1(‘1!5) = %[Uif(qu) + Uv,.,(‘lv"))

+3(oum(g,5) — oee(q, s)) cos 2((8(q) — 6(s)] — o¢n(q, s) sin 2[é(q) - 6(s)]

(30)

These steps are readily implemented in a computational procedure. It is noted that
the implementation requires no approximation in the calculation of the factors Z,;(q, s)
for any values of ¢ and s.
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